报告时间:2023年3月16日(星期四)15:00
报告地点:翡翠科教楼B1710
报 告 人:欧阳毅 教授
工作单位:中国科学技术大学
举办单位:8827太阳集团官网
报告简介:
Suppose K is a global field, L/K is a cyclic extension and A/K is an abelian variety. In this talk, we prove several unboundedness results of the Tate-Shafarevich groups Sha(A/L) under the conditions that:
(1) A is a fixed abelian variety over K and L varies over cyclic extensions of K of the same degree, which give an affirmative answer to an open problem proposed by K. Cesnavicius;
(2) L/K is a fixed cyclic extension, and either K is a number field and A varies over elliptic curves,or the degree of L/K is 2-power and A varies over quadratic twists of a principally polarized abelian variety, which generalize results of K. Matsuno and M. Yu respectively.
This is a joint work with Jianfeng Xie.
报告人简介:
欧阳毅,中国科学技术大学数学系教授,博士生导师。中国科大学士(1993)、硕士(1995),美国明尼苏达大学博士(2000)。毕业后在加拿大多伦多大学和清华大学工作,2006年回中国科大任教授。主要研究方向为代数数论和算术代数几何。2018年被评为安徽省教学名师,并荣获2017年宝钢优秀教师奖和2022年霍英东教育教学奖等荣誉。发表SCI论文40余篇,包括国际著名数学期刊Crelle和Compositio Math,等,并与国际著名数学家Fontaine、Benois完成论著Theory of p-adic Galois representations。